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Recent developménts in quantum chemistry now permit a wide variety of M. O.
calculations on organic compounds of theoretical and practical interest in
which the - framework is explicitly included. Thus far, however, these cal-
culations have been largely limited to the calculation of heats of atomization
(1) and conformational energies (2). Hoffmann has also considered a number of
carbonium ion intermedietes (transition states), as has Wiberg (1b,2).

In this communication, we report the application of the extended Hiickel
method (2) to the calculation of thermodynamic stability differences (rate rat-
ios) for the enolization of a number of structurally simple methyl ketones which
have been studied experimentally (3). In the case of enols, activation energies
are deduced from the energy difference of the respective enol and ketone.

Enols and enolates derived from methyl ketones are idesl for such calculat-
ions because the number and types of atoms are the same for the 1- aud 3-enols
and enolates, respectively. The energy differences calculated for the 1- and
3-enols {enolates) will therefore reflect differences in their stabilities and
hence rates of formation. In order for these energy differences to be mean-
ingfully related to experimental rate ratios for acid- and base-catalyzed enol-
ization (deuteration), a detailed knowledge of the transition state for encl-
ization is required, and ideally, calculations should be carried out on these
structures. In the absence of such knowledge, we have carried out calculations
on the enols (for en enol-like transition state) for acid-catalyzed enolization,

and on the enolates (for an' enolate-like transition state) for base-catalyzed
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enolization. The latter approximation may be in error as there are cases in
the literature where the transition state for base-catalyzed enolization has
been infered as ketone-like (3b,4). However, the degree to which experiment
and calculation agree should be some meazsure of the validity of the approximet-
ions introduced. One additional approkimation, and perhaps the most scrious
one, deserves mention. This is the isolated-molecule approximation (5) in
which specific solvation effects, entropy, and zero-point vibrational energy
differences are conspicuously neglected. Of these, the neglect of solvent-
substrate interactions is vrobably the most serious, and indeed, there is evid-
ence that the nature of the solvent cun affect the orientation of enolization
(3,6).

Calculations were carried out on only one conformation for each enol, enol-
ate, and ketone studied. Calculations were not made on larger ketones and
enols because c¢f the increased number of rotational degrees of freedom and the
inherent difficulty in intuitively choosing the low energy conformation. Con-
formations were chosen which reflect as much as possible what is known about
conformational minima in similar systems (7). Table I lists the bond lengths
and angles used in calculating the atomic coordinates, as well as the other in-
put parameters. The results of the caleculations and the experimental values

are listed in Table II.

Iable I.
Bond lengths Bond angles Ionization Slater
(intermiclear distance) potentials(8) coefficients
c-C 1.544% sp3 carbon 109,59 carbon(2s) -21.4eV 1.625
c=C 1.3% sp2 carbon 120.0° carbon(2p) -11.4 1.€25
c-H 1.09 H-C-H 114.0° hydrogen(1s) -13.€ 1.000
eyclopropane)
C=0 1.21 (ey : oxygen(2s) -35.0 2.275
c-0  1.21 C-C=C 60,00 oxygen(2p) -17.5 2.275
(cyclopropane)
0-H 0.9€ ¢-0-H 109°

Cc-C 1.51
(cyclopropane)
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